Extracting Stops from Noisy Trajectories: A Sequence Oriented Clustering Approach

نویسندگان

  • Longgang Xiang
  • Meng Gao
  • Tao Wu
چکیده

Trajectories, representing the movements of objects in the real world, carry significant stop/move semantics. The detection of trajectory stops poses a critical problem in the study of moving objects and becomes even more challenging due to the inevitable noise recorded along with true data. To extract stops with a variety of shapes and sizes from single trajectories with noise, this paper presents a sequence oriented clustering approach, in which noise points within the sequence of a stop can be identified and classified as a part of the stop. In our method, two key concepts are first introduced: (1) a core sequence that defines sequence density based not only on proximity in space but also continuity in time as well as the duration over time; and (2) an Eps-reachability sequence that aggregates core sequences that overlap or meet over time. Then, three criteria are presented to merge Eps-reachability sequences interrupted by noise. Further, an algorithm, called SOC (Sequence Oriented Clustering), is developed to automatically extract stops from a single trajectory. In addition, a reachability graph is designed that visually illustrates the spatio-temporal clustering structure and levels of a trajectory. Finally, the proposed algorithm is evaluated against two baseline methods through extensive experiments based on real world trajectories, some with serious noise, and the results show that our approach is fairly effective in recognizing trajectory stops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and Hierarchical Stop Discovery in Sparse and Diverse Trajectories

The advance of GPS tracking technique brings a large amount of trajectory data. To better understand such mobility data, semantic models like “stop/move” (or inferring “activity”, “transportation mode”) recently become a hot topic for trajectory data analysis. Stops are important parts of trajectories, such as “working at office”, “shopping in a mall”, “waiting for the bus”. There are several m...

متن کامل

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Automatic motion capture data denoising via filtered subspace clustering and low rank matrix approximation

In this paper, we present an automatic Motion Capture (MoCap) data denoising approach via filtered subspace clustering and low rank matrix approximation. Within the proposed approach, we formulate the MoCap data denoising problem as a concatenation of piecewise motion matrix recovery problem. To this end, we first present a filtered subspace clustering approach to separate the noisy MoCap seque...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016